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Abstract: We introduce perturbative spatial frequency domain imaging (p-SFDI) for fast two-
dimensional (2D) mapping of the optical properties and physiological characteristics of skin and
cutaneous microcirculation using spatially modulated visible light. Compared to the traditional
methods for recovering 2D maps through a pixel-by-pixel inversion, p-SFDI significantly shortens
parameter retrieval time, largely avoids the random fitting errors caused by measurement noise,
and enhances the image reconstruction quality. The efficacy of p-SFDI is demonstrated by in
vivo imaging forearm of one healthy subject, recovering the 2D spatial distribution of cutaneous
hemoglobin concentration, oxygen saturation, scattering properties, the melanin content, and the
epidermal thickness over a large field of view. Furthermore, the temporal and spatial variations
in physiological parameters under the forearm reactive hyperemia protocol are revealed, showing
its applications in monitoring temporal and spatial dynamics.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Biomedical optical imaging and diagnostic methods have been actively pursued in past decades due
to some significant advantages, including non-invasiveness, high sensitivity to the chromophore
content, and low cost. For skin imaging, optical coherence tomography (OCT) [1] and confocal
microscopy (CM) [2] have emerged as high-resolution (e.g., 1-10µm) imaging methods. Their
main drawback is the limitation to morphology and imaging depth. Spectroscopic techniques
such as diffuse reflectance spectroscopy (DRS) [3], near-infrared spectroscopy (NIRS) [4], and
Raman spectroscopy (RS) [5] have also been used to acquire information about the structure and
biochemical composition of the tissue. Raster scanning is required for wide-field two-dimensional
(2D) imaging and often not affordable for real-time diagnosis.

Recently, Spatial Frequency Domain Imaging (SFDI) [6–13] has attracted significant attention
as one noncontact and wide-field quantitative modality for rapid mapping of optical properties
(absorption and scattering coefficients) and physiological parameters (hemoglobin concentration,
oxygen saturation, and the melanin content) of tissue. The optical and physiological properties are
obtained by fitting the tissue modulation transfer function (MTF) to appropriate light migration
models [14–16] or Monte Carlo simulations [17]. A look-up table has been utilized to approximate
the relationship between the optical properties and the measured MTF values and speed up the
two-dimensional imaging using SFDI [18]. In more complex situations such as imaging layered
media, SFDI is limited in speed for a video-rate two-dimensional large field of view mapping with
the traditional methods through a pixel-by-pixel inversion. As one potential solution, deep neural
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networks were proposed for optical parameter estimation with spatially resolved reflectance
[19–21], reaching 300−100,000 times improved inversion speed. However, to the best of our
knowledge, there have not been reports of a deep neural network inverse model that solves more
than two parameters (absorption and reduced scattering coefficients) in SFDI. Therefore, new fast
processing and interpretation of the two-dimensional SFDI measurement for the simultaneous
mapping of the optical properties and physiological characteristics are desired, particularly for in
vivo clinical applications.

In this article, we, for the first time, introduce perturbative spatial frequency domain imaging (p-
SFDI) for fast two-dimensional mapping of the optical properties and physiological characteristics
of skin and cutaneous microcirculation using spatially modulated visible light over a large field-
of-view (FOV). Our approach significantly shortens parameter retrieval time with perturbation
analysis based on an analytical model of structured light reflection by layered media. More
importantly, it substantially enhances the image reconstruction quality and largely avoids the
random fitting errors caused by measurement noise inherent to the traditional methods through a
pixel-by-pixel inversion. The efficacy of p-SFDI is then demonstrated by in vivo imaging the
forearm of one healthy subject and monitoring the temporal and spatial cutaneous hemodynamics
under the forearm reactive hyperemia protocol.

2. Materials and methods

2.1. Spatial frequency domain imaging for the two-layer tissue

Spatial frequency domain imaging (SFDI) is a wide-field and noncontact method that uses
spatially modulated structured illumination patterns:Iin = IDC

(0) + IAC
(0) cos(2πfx + φ) where fx,

φ are the spatial modulation frequency and the phase angle. The reflectance takes the form of

Iout = IDC + IAC cos(2πfx + φ). (1)

The ratios IDC/I(0)DC and IAC/I(0)AC represent the modulation transfer function (MTF) of reflected
light at the spatial frequency 0 and fx. Three-phase demodulation from three measurements taken
at φ, φ+2π/3, and φ+4π/3 phase delays are commonly used to compute MTF for each spatial
frequency. The MTF values are then fitted to a light reflectance model to obtain absorption (µa)
and reduced scattering (µs

′) coefficients pixel-by-pixel in conventional SFDI [8,22].
Light reflectance from forward-peaked scattering media such as biological tissue at an arbitrary

separation and any spatial frequency has been described in detail [15]. At low spatial frequencies,
light reflection is diffusive. Diffuse light reflectance is dominated by the snake and diffuse
photons and is given by

Isnake(q) =
µ′s

2

8πβ2
√︁

1 − q2β−2
log

(︂
1 +

√︁
1 − q2β−2

)︂2

1 +
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1 − q4β−4
(2)

and

Idiffuse(q) =
3µ′s3

8π
1 + (2β + Q)l
β(β + Q)2(1 + Ql)

(3)

from spatially modulated incident light of unit intensity where q ≡ 2πfx, β ≡ µa + µ
′
s, Q ≡√︁

q2 + 3µaβ, and l ≡ α/µ′s. Here q, β, l and α are the angular frequency, reduced attenuation
coefficient, extrapolation length, and surface roughness [23], respectively. Tissue MTF measure-
ments at a low spatial frequency can be used to determine optical parameters (µa, µs

′, and α) by
fitting to their theoretical prediction of the enhanced diffuse light reflectance I= Isnake+Idiffuse.

Biological tissue such as skin is highly structured and layered. Chromophores like melanin
are typically confined within the epidermis, whereas hemoglobin is confined within the dermis
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beneath. Accounting for the two-layer structure is critical for accurately recovering hemoglobin
concentration and oxygen saturation [7,24,25]. We have developed a novel two-layer model
for SFDI, mapping the two-layer structure to an equivalent homogeneous medium [11]. The
absorption coefficients within the epidermis and dermis are given by

µa,epidermis(λ) = εmelanin(λ)cmelanin (4)

and
µa,dermis(λ) = εHb(λ)cTHbStO2 + εHbO2 (λ)cTHb(1 − StO2) (5)

where εHbo2, εHb, εmelanin are the molar extinction coefficients of oxygenated hemoglobin,
deoxygenated hemoglobin, and melanin, respectively; and cTHb, StO2, cmelanin are the total
hemoglobin concentration, oxygen saturation, and the melanin concentration, respectively. The
equivalent absorption coefficient µa(q, λ) is determined by requiring total light absorption to be
equivalent within the two systems, i.e.,

µa(q, λ)L(q, λ) = µa,epidermis(λ)h + µa,dermis(λ)(L − h). (6)

Here h is the epidermal thickness, and L is the mean penetration depth for the modulated light at
the spatial frequency fx and the wavelength λ [11,26], given by

L(q, λ) =
(1 + Ql)2(2β)−2 + (1 + βl)2(2Q)−2 − 2(1 + Ql)(1 + βl)(Q + β)−2

(1 + Ql)2(2β)−1 + (1 + βl)2(2Q)−1 − 2(1 + Ql)(1 + βl)(Q + β)−1 . (7)

As light scattering by the epidermis and dermis is dominated by the fractal refractive index
fluctuation [16,27,28], the reduced scattering coefficient can be written by a power law

µs
′(λ) = µs

′(λ0)

(︃
λ

λ0

)︃−b
(8)

ignoring the difference in the scattering properties between the epidermis and dermis [7,11,24,25]
where b is the scattering power. The reference wavelength λ0 in Eq. (8) is set to the central
wavelength in our experimental setup (540 nm).

The pixel-by-pixel inversion for layered media [11,13] fits cTHb, StO2, cmelanin, h, µs
′
(λ=540nm),

b, and α using the function “fmincon” in Matlab by minimizing the least squared error:

error =
3∑︂

i=1
[(MTFAC(λi) − mtfAC(λi))

2 + (MTFDC(λi) − mtfDC(λi))
2] (9)

at each point where i=1, 2, 3 represent the three wavelengths (Red (623 nm), Green (540 nm),
and Blue (460 nm)) and the theoretical values of the modulation transfer functions mtfDC and
mtfAC are computed with the enhanced diffuse light reflectance I= Isnake+Idiffuse at the spatial
frequencies 0 and fx. Validation on the standard optical phantom (Biomimic, Canada) shows an
error of less than 2% for the measured absorption and scattering coefficients comparing to their
known values [11].

2.2. Fast two-dimensional mapping of parameters based on perturbative SFDI

In contrast to the traditional methods for the recovery of 2D maps through a pixel-by-pixel
inversion, the perturbative SFDI comprises two steps: first grouping pixels into multiple clusters
according to their measured values and recovering the optical and physiological properties for an
“average” case for each cluster and then solving all pixels in that cluster through perturbation to
the “average” one. We used k-means clustering [29–31] to group the pixels over the whole field
of view into different groups according to their measured DC and AC MTF values.
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The theoretical prediction of diffuse light reflectance I= Isnake+Idiffuse is a multivariable function
of cTHb, StO2, cmelanin, h, µs

′
(λ=540nm), b, and α. It can be rewritten as

I(X) ≈ I(X0) + ∇I |X0 · (X − X0) (10)

to the first order where X is the vector of variable parameters (cTHb, StO2, cmelanin, h, µs
′, b, and

α), and X0 is the recovered optical and physiological properties for the “average” case whose
MTFs are the average over one whole cluster. In our setup, DC and AC light reflectance at three
wavelengths λ1=460 nm, λ2=540 nm, and λ3=623 nm are measured. Equation (10) yields

(11)

and can be simply expressed as
∆I = Sn∆Xn (12)

in a matrix notation. With the analytical light reflectance expressions, the partial derivative Sn
can be computed straightforwardly. We have found (see Sec. 3.1) that light reflectance depends
close to linearly on each variable over the typical range for biological tissues, leading to a stable
Sn.

The flowchart for fast two-dimensional mapping of parameters is outlined in Fig. 1. First, we
extract tissue DC and AC MTFs at the multiple wavelengths with three-phase demodulation and
group the pixels over the whole field of view into different clusters according to their MTF values
using k-means clustering. The average of MTF values over all pixels in each cluster is computed
to yield the “average” case <I>. The “average” case is fitted to obtain the “average” optical and
physiological properties X0 and the partial derivative Sn at X0 for each cluster. The perturbation
to each pixel’s optical and physiological properties is then given by the product of corresponding
partial derivative inverse Sn

−1 and light reflectance perturbation ∆I, yielding their correct optical
and physiological properties X0 + ∆Xn.

Fig. 1. Flowchart of fast two-dimensional mapping of optical and physiological properties
based on perturbation.
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Compared to the traditional pixel-by-pixel inversion, the speed of two-dimensional mapping
of optical properties and physiological parameters based on perturbation SFDI increases approx-
imately by a factor equal to the total number of pixels in one cluster. More importantly, this
approach suppresses the sporadic fitting errors caused by measurement noise and substantially
enhances the image reconstruction quality.

2.3. Experiment procedure

The schematic diagram for the digital micro-mirror device (DMD)-based SFDI system is shown
in Fig. 2. The illumination comprises three monochromatic light of three wavelengths: 623 nm
(Red), 540 nm (Green), and 460 nm (Blue), respectively. The sinusoidal fringe pattern produced
on a DMD (DLP LightCrafterTM 4500, Texas Instruments) is magnified by a factor of four and
projected onto the specimen. The spatial modulation frequency in our reported experiments
is 0.2mm−1. A pellicle beamsplitter is used to integrate the modulated illumination system
and imaging system without introducing ghosting. A CCD camera (Point Gray Grasshop3
GS3-U3-51S5C) was used to record backscattered light reflectance images. The exposure time
was set at 20 ms. The SNR for the recorded intensity at one single pixel is approximately 28 dB.
The field of view on the specimen surface is 27mm×18 mm, and one millimeter on the specimen
surface corresponds to 60 pixels on the CCD in the reported experiments.

Fig. 2. Schematic diagram of the DMD-based SFDI system.

As the DMD’s output light intensity is not linear and uniform over the whole field of view,
calibration was performed to correct the nonlinearity and nonuniformity based on the diffuse
reflectance from a Lambertian reflectance standard (Hefei Xingyue Luminous Technology
Applications Institute, China) [10]. The modulation transfer function of the optical system was
also calibrated by imaging resolution test targets (R1L1S1P, Thorlabs, Inc.) over the spatial
frequency range. The diffuse reflectance from the Lambertian reflectance standard was used
to determine the illumination light intensity. Color correction was further performed to unmix
the three channels of the camera [11]. The absolute MTF of the specimen is computed after
incorporating all the above factors [10,12].
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3. Results and discussion

3.1. Simulation study for fast two-dimensional mapping of optical and physiological
parameters

Two typical types of skin tissues (normal skin and melanotic nevus) were used to simulate and
verify the robustness of perturbative SFDI. The typical physiological and optical parameters
(<cTHb>, <StO2>, <cmelanin>, <µs

′>, <b>, <α>, <h>) of normal skin and melanotic nevus
were set at (0.02 mM, 0.7, 4.5 mM, 1.6mm−1, 1, 0.7, 0.1 mm) and (0.01 mM, 0.5, 8.0 mM,
1.0mm−1, 0.5, 0.4, 0.2 mm), respectively, according to our earlier findings [11]. The reduced
scattering coefficient (µs

′) was for the central wavelength 540 nm.
Figure 3 shows the dependence of DC and AC light reflectance at the three wavelengths on

each parameter within the human tissue range for normal skin and melanotic nevus tissues. The
dependence is approximately linear, resulting in a stable slope Sn. The calculated sensitivity
of light reflectance on seven parameters at the reference points for two different skin types is
summarized in Table 1.

Table 1. The Sensitivity of Light Reflectance on Parameters for Normal Skin and Melanotic Nevus.

cTHb (mM) StO2 cmelanin (mM) µs
′ (mm−1) b α h (mm)

Normal
skin

AC(460 nm) -0.3060 -0.0025 -0.0054 0.0213 0.0055 0.0133 -0.2289

AC(540 nm) -0.3792 0.0005 -0.0031 0.0266 0 0.0133 -0.1244

AC(623 nm) -0.0290 0.0013 -0.0020 0.0324 -0.0074 0.0158 -0.0875

DC(460 nm) -0.7762 -0.0064 -0.0102 0.0111 0.0029 0.0218 -0.4307

DC(540 nm) -1.2660 0.0015 -0.0068 0.0173 0 0.0326 -0.2766

DC(623 nm) -0.4346 0.0188 -0.0113 0.0057 -0.0013 0.0820 -0.5000

Melanotic
nevus

AC(460 nm) -0.0412 -0.0002 -0.0038 0.0049 0.0008 -0.0065 -0.1487

AC(540 nm) -0.1429 0.0001 -0.0027 0.0156 0 -0.0001 -0.1035

AC(623 nm) -0.0189 0.0003 -0.0018 0.0249 -0.0036 0.0051 -0.0719

DC(460 nm) -0.0823 -0.0004 -0.0059 0.0015 0.0002 -0.0103 -0.2296

DC(540 nm) -0.4726 0.0003 -0.0059 0.0059 0 0.0016 -0.2304

DC(623 nm) -0.1460 0.0022 -0.0071 0.0016 -0.0002 0.0265 -0.2814

To evaluate the image quality improvement with p-SFDI against the pixel-by-pixel least-squares
fitting method, we simulated the AC and DC MTFs at three wavelengths (460 nm, 540 nm,
623 nm) and spatial frequencies f = 0 and 0.2mm−1 for a layered medium of properties similar
to a nevus based on the enhanced diffusion model. The accuracies of the recovered optical
and physiological parameters by p-SFDI and pixel-by-pixel inversion were compared under
different noise levels (see Fig. 4 and Table 2). P-SFDI outperforms the pixel-by-pixel inversion
with less mean squared relative errors, particularly at a higher noise level. Even at a low noise
level (1% noise), p-SFDI improves image reconstruction quality significantly, removing image
artifacts and outlining the nevus morphology more accurately by suppressing the adverse effects
of measurement noise (see Fig. 4).

3.2. In vivo two-dimensional fast imaging of forearm skin parameters of one healthy
subject

Forearm skin of one healthy subject was demonstrated for the 2D fast mapping of the skin optical
properties and physiological characteristics. The cTHb, StO2, melanin area-density concentration
(cmelanin×h), µs

′, b, α and h maps were recovered, respectively, by perturbative SFDI (see
Fig. 5(a)) and pixel-by-pixel least-squares fitting (see Fig. 5(b)). The 100pixel×100pixel nevus
region of interest (ROI) was selected in the image window, and the parameter k was set to 20 for
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Fig. 3. The dependence of AC and DC light reflectance at three wavelengths (460 nm,
540 nm, and 623 nm) on the variation of each parameter for normal skin (left column) and
melanotic nevus (right column) tissues. (a) Reflectance vs. THb concentration cTHb ; (b)
Reflectance vs. Oxygen saturation StO2; (c) Reflectance vs. Melanin concentration cmelanin;
(d) Reflectance vs. The reduced scattering coefficient µs ′ at λ=540 nm; (e) Reflectance vs.
Scattering power b; (f) Reflectance vs. Surface roughness α; (g) Reflectance vs. Epidermal
thickness h. The dots on the curves mark the position of the reference point for each
parameter.
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Fig. 4. Extraction of optical and physiological parameters by perturbative SFDI (p-SFDI)
and the pixel-by-pixel least-squares fitting under 1% noise. (a) Ground truth, (b)-(c)
according to parameters extraction by p-SFDI and pixel-by-pixel fitting, respectively.
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Table 2. Accuracy (mean squared relative error) of recovered optical
and physiological parameters by perturbative SFDI (p-SFDI) vs. the

pixel-by-pixel least-squares fitting.

1% noise 3% noise

p-SFDI

Thb(mM) 6.3% 8.5%

StO2 5.0% 5.3%

Melanin(mM) 3.6% 3.9%

µs
′ (mm−1) 1.5% 2.0%

b 2.4% 3.2%

α 7.0% 7.9%

h (mm) 10.3% 12.9%

Pixel-by-pixel fitting

Thb(mM) 7.3% 20.8%

StO2 6.6% 19.1%

Melanin(mM) 5.8% 17.6%

µs′ (mm-1) 2.7% 8.2%

b 11.3% 36.7%

α 9.2% 26.8%

h (mm) 12.8% 39.3%

the k-means clustering for data analysis. The mean and standard deviation of the seven parameters
retrieved by the two different methods was displayed in Fig. 6 and Table 3. The results show that
the average optical and physiological parameters retrieved by the two methods agree. However,
perturbative SFDI performs significantly better in recovering the nevus’ morphology thanks to
its superior measurement noise suppression (see Fig. 5). The appreciable noise interference at
the upper right corner of the ROI (see Fig. 5(b)) largely disappears in Fig. 5(a). The nevus region
is observed to have much higher melanin content and lower oxygen saturation than surrounding
areas, agreeing with the findings by Ref. [32].

Table 3. Mean and Standard Deviation of Optical and Physiological Parameters of Skin by Two
Different Methods over the ROI.

cTHb
(mM)

StO2 cmelanin×h
(mM·mm)

µs
′

(mm−1)
b h

(mm)
α

Perturbative
SFDI

0.033
(0.003)

0.405
(0.027)

1.168
(0.142)

1.336
(0.129)

0.457
(0.179)

0.209
(0.008)

0.426
(0.039)

Pixel-by-pixel
fitting

0.032
(0.004)

0.382
(0.026)

1.125
(0.055)

1.369
(0.103)

0.543
(0.219)

0.183
(0.013)

0.388
(0.031)

3.3. Monitoring cutaneous hemodynamics

The cutaneous hemodynamics for one healthy subject under the forearm reactive hyperemia
protocol was then imaged by perturbative SFDI. The measurement was taken for 4 minutes during
occlusion (cuff pressure: 200 mmHg) and 3 minutes after cuff release at the rate of 3 images per
second. The photo of the imaged area and 2D maps for optical and physiological properties of
the human forearm skin at one minute before and after cuff release were shown in Fig. 7. Box and
whisker plots were shown in Fig. 8 for hemoglobin concentration and oxygen saturation (StO2) in
the venous region. The average and standard deviation of cTHb and StO2 were 0.0165± 0.0009 mM,
0.578± 0.043 upon cuff occlusion, whereas they jumped to 0.0245± 0.0009 mM, 0.835± 0.071
upon the cuff release, respectively. The other parameters remained essentially unchanged.
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Fig. 5. The 2D distribution of THb concentration, StO2, Melanin content, the reduced
scattering coefficient µs ′ at 540 nm, scattering power b, surface roughness α, and epidermal
thickness h for forearm skin containing a nevus by perturbative SFDI (a) and by pixel-by-pixel
least-squares fitting (b). The white dotted square outlines the nevus ROI in the photo of the
imaged region.
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Fig. 6. Comparison of the retrieved skin physiological and optical characteristics by
perturbative SFDI and pixel-by-pixel fitting over the ROI shown in white dotted lines in the
original image. The values of cTHb have been multiplied by 10 for clarity.

Fig. 7. The photo of the imaged area and 2D maps for optical and physiological properties
of forearm skin before (a) and after (b) the cuff release. The white dotted line outlines the
venous region. The red dotted circle marks one area of capillary recruitment upon cuff
release.
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More interestingly, the spatial distribution of the total hemoglobin also expands, suggesting the
recruitment of idle capillaries upon the cuff release [33].
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Fig. 8. Box and whisker plots for skin physiological parameters (hemoglobin concentration
and oxygen saturation) in the venous region before and after the cuff release.

4. Discussion and summary

We have presented perturbative SFDI (p-SFDI) for fast two-dimensional mapping of the optical
properties and physiological characteristics for skin and cutaneous microcirculation using
spatially modulated visible light. Various methods have been proposed to obtain the DC
and AC amplitudes from demodulating structured light reflectance [9,10,34,35]. One crucial
trade-off in demodulation is between spatial resolution and noise suppression. The three-phase
demodulation for SFDI enjoys the highest spatial resolution but is prone to measurement noise
[10]. Other methods rely on different forms of filtering. The single snapshot multiple frequency
demodulation (SSMD) extracts DC and AC components from a single snapshot at a

√
N times

higher signal-to-noise ratio (SNR), where N is the total number of pixels inside the SSMD kernel
[10]. However, SSMD comes at the cost of reduced spatial resolution when the scale over which
the medium’s optical properties vary is smaller than the kernel size.

The proposed p-SFDI provides a unique approach to improve the robustness and SNR of the
three-phase demodulation while retaining its superior spatial resolution. The key of p-SFDI is by
grouping pixels into multiple clusters by k-means clustering according to their measured MTF
values and recovering the optical and physiological parameters for an “average” case, followed
by solving all pixels in one cluster through perturbation to the “average” one. The validity of
the perturbation approach is ensured by maintaining sensitivities within each cluster (covering
∼10% of the AC and DC range; see Fig. 3) to be approximately constant. The DC and AC MTF
values of the “average” case are the average of respective MTF values for all pixels within the
cluster, whose SNR increases by roughly

√
N′ times with N’ being the total number of pixels

in one cluster. A well-posed matrix inversion then finds the perturbation to the “average” case
and recovers the true values. As a consequence of this two-step approach, the proposed p-SFDI
suppresses measurement noise and enhances the image reconstruction quality without losing
three-phase demodulation’s spatial resolution.

Compared to the traditional pixel-by-pixel inversion, p-SFDI not only largely avoids the image
artifacts caused by measurement noise but also significantly shortens parameter retrieval time.
The image retrieval speed is much faster by p-SFDI than by pixel-by-pixel least-squares fitting.
We used a non-linear fitting routine “fmincon” in Matlab (MathWorks Inc., USA) to fit the
optical and physiological parameters from the measurement. The fitting routine is iterative and
time-consuming. The speedup of p-SFDI over the pixel-by-pixel inversion is approximately N’
times. For the images presented in Fig. 4, the pixel-by-pixel fitting method took nearly over 5
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hours, while p-SFDI took only 40s. Varying the number of clusters used in p-SFDI has negligible
effects on the recovery of optical properties and physiological characteristics. The difference
is about 1% when the number of clusters varies between 20 and 500. A cluster number of
∼20 works well for biological tissue of a limited range for their properties to achieve image
reconstruction accuracy and speed requirements.

We note the p-SFDI processing time scales with the number of clusters but not the image size.
For a full-sized image of 1620×1080 pixels, the inverse process remained approximately 40s
with p-SFDI on a PC desktop with 8 GB of RAM and an AMD R7-1700 eight-core processor,
excluding the processing time required by k-means clustering (k=20). When a database of
the “average” case is pre-computed, p-SFDI will enable 2D imaging optical and physiological
properties over a large field of view in real-time using the fast k-means clustering algorithms
[36,37].

The efficacy of this perturbative SFDI has been demonstrated by in vivo imaging forearm of
one healthy subject, yielding accurate determination of cutaneous hemoglobin concentration,
oxygen saturation, the scattering properties, the melanin content, and the epidermal thickness
over a large field of view in real-time. The temporal and spatial variations in physiological
parameters under the forearm reactive hyperemia protocol have also been revealed. This work
paved the way for 2D imaging and monitoring temporal and spatial dynamics in vivo over a large
field of view in real-time with perturbative SFDI.
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